3 research outputs found

    Revisiting the Uniform Information Density Hypothesis

    Full text link
    The uniform information density (UID) hypothesis posits a preference among language users for utterances structured such that information is distributed uniformly across a signal. While its implications on language production have been well explored, the hypothesis potentially makes predictions about language comprehension and linguistic acceptability as well. Further, it is unclear how uniformity in a linguistic signal -- or lack thereof -- should be measured, and over which linguistic unit, e.g., the sentence or language level, this uniformity should hold. Here we investigate these facets of the UID hypothesis using reading time and acceptability data. While our reading time results are generally consistent with previous work, they are also consistent with a weakly super-linear effect of surprisal, which would be compatible with UID's predictions. For acceptability judgments, we find clearer evidence that non-uniformity in information density is predictive of lower acceptability. We then explore multiple operationalizations of UID, motivated by different interpretations of the original hypothesis, and analyze the scope over which the pressure towards uniformity is exerted. The explanatory power of a subset of the proposed operationalizations suggests that the strongest trend may be a regression towards a mean surprisal across the language, rather than the phrase, sentence, or document -- a finding that supports a typical interpretation of UID, namely that it is the byproduct of language users maximizing the use of a (hypothetical) communication channel

    Reading Task Classification Using EEG and Eye-Tracking Data

    Full text link
    The Zurich Cognitive Language Processing Corpus (ZuCo) provides eye-tracking and EEG signals from two reading paradigms, normal reading and task-specific reading. We analyze whether machine learning methods are able to classify these two tasks using eye-tracking and EEG features. We implement models with aggregated sentence-level features as well as fine-grained word-level features. We test the models in within-subject and cross-subject evaluation scenarios. All models are tested on the ZuCo 1.0 and ZuCo 2.0 data subsets, which are characterized by differing recording procedures and thus allow for different levels of generalizability. Finally, we provide a series of control experiments to analyze the results in more detail
    corecore